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Abstract

The properties of a reduced friction model for elastic bodies with general surfaces in contact are explained, and it is
proved that the tangential friction problem can be reduced to the normal problem. The tangential solution results as the
difference of the full slip traction for actual contact and a smaller contact area, which represents the stick area (or
multiple areas). The local traction in the slip area opposes the relative motion in the same way as the normal relative
approach opposes the contact pressure, as required by Coulomb’s slip inequality. The stick inequality for the traction is
identical with the contact condition of positive pressure. A superposition method for general loading scenarios is ex-
plained and an example is calculated at the end. The force displacement relation of the reduced friction model agrees
well with the FEM solution, even for dissimilar materials, because the dissimilarity effect is small in practical ap-
plications. Since numerical solutions of frictional contact are rare in literature, an example for a contact area with a hole
is presented.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Contact problems are a field of increasing importance in mechanics. Typical applications are mechanical
elements as joints, gears, gaskets, brakes, roller bearings, clutches and more. Advanced computer methods
allow the solution of complicated problems and require new methods for verification and modeling. A new
method by Jager (1995, 1998) “reduces” the friction problem to the normal problem, and therefore was
called “reduced elastic friction model”. There is also a correspondence between the conditions of Cou-
lomb’s law and the contact conditions, when two elastic bodies are in contact on the area C*. An increase of
the pressure p* by Ap enlarges the contact area C* to the size of C. The normal increment Ap = p — p*
satisfies the contact condition for the relative displacement: s, = 0 in C*. For equal normal and tangential
stress-displacement equations, the stick condition s7 = 0 is identical with the normal contact condition,
assuming that C* coincides with the stick area. Setting the traction ¢ = fAp satisfies Coulomb’s slip
equation g = fp in the slip zone C — C*, with the coefficient of friction f and p* = 0 outside of C*. There are
also two inequalities, (1) the traction ¢ must be smaller than fp in the stick zone C* and (2) the slip must
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oppose the traction in the slip zone C — C*. The stick inequality ¢ = fAp = f(p — p*) < fp is satisfied for
positive pressure increments, and Ap > 0 is also the normal contact condition for a truncated punch with
the flat base C*. For equal stress-displacement equations, the normal and tangential displacements are
proportional, which carries over to the slip, i.e. s, is proportional to the normal relative approach
As, = s, — 5. The normal approach As, opposes the normal pressure Ap, and the traction g opposes the slip
s, in the same way. It can be concluded that the mathematical model for friction is identical with the normal
contact model, although it is physically different. This equivalence is independent of the mathematical form
of the contact law. The integral of the traction gives the tangential force F, = f(F. — F)*) as the difference of
the slip force fF, for the contact area and fF)* for the stick area. This equation can be used for the cal-
culation of the virtual normal force F = F, — F,/f, which determines the stick area C*.

The elastic friction principle cannot be regarded as a strict mathematical theorem, because physical
applications require the omission of side effects, such as the coupling between tangential traction compo-
nents of the classical Cattaneo—Mindlin model for paraboloidal surfaces. Some details of referred publi-
cations, which are necessary for the understanding of elastic properties, are included in the present
manuscript, in order to make it more self-contained. The necessary assumptions and the proof of
Coulomb’s inequality were presented at the conference Pacam VII by Jager (2002b). A summary of new
solutions and a computer program for half-space problems, which is used below, can be found in a
forthcoming book by Jager (2003).

2. Formulation of the model
The basic assumptions of the reduced elastic friction model are

(1) Equal bodies of linear elastic materials in contact.

(2) Coulomb’s rigid sliding law is used in a local form and assumes that the frictional traction is propor-
tional to the pressure.

(3) The displacement-load equations are equal and uncoupled for all components.

(4) Advancing contact.

(5) Motion without rolling (no rotation around a tangential axis of contact).

The third assumption can be written

szdkf(X,y»sz), ke{x7y7z}7 (1)

where u; denotes the displacement components, o,; the components of the surface stress, d; constant
compliances, index k the coordinates x, y, z and f'(x, y, 0;) an arbitrary function. Examples for the function
f(x,y,0.) are the integrals of line forces for half-planes (Jager, 1997), constants for a plane strip (Jager,
1999a), and a Winkler foundation (Jager, 2000). Equal tangential compliances d, = d,, assure a constant
direction of the displacements parallel to the tangential force, whereas the normal compliance d, can be
different.

The model of a rigid punch on a flat elastic plane is used as illustration of the contact and friction
conditions. In the first step, the lower elastic plane is shifted upwards by the value {* and a contact area C*
forms, as illustrated in Fig. 1, where the asterisk “*’ characterizes values of step 1. We have the following
conditions for the relative motion s! of the lower elastic plane with respect to the rigid punch and the
pressure p* = —a’

zz

«_ «y_ #) =—h(x) contact for x € C*,
s;=ulx)—f { > —h(x) separation for x ¢ C*, (2)



J. Jager | International Journal of Solids and Structures 40 (2003) 5051-5061 5053

rigid punch / i Uz
iy
C ; b a"ug k|S C

o *®
ey ¢

: X
elastic plane 17, §—

Fig. 1. Rigid punch in contact with an elastic plane.
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with the gap /(x) in undeformed contact. The relative motion s < 0 in Fig. 1 and the displacement u differ
by the rigid body motion —{* in Fig. 1.

In the next step, the compression is increased to the value { and a larger contact area C forms. The
condition for contact and separation are the same as in Egs. (2) and (3), when the asterisk is omitted for all
variables, and Fig. 1 shows that points in the contact area C* do not move relatively to the rigid punch. The
contact condition (2) for the relative motion in the contact area must be s.(x) = —h(x) < s¥(x) < 0 for
x € C — C* (Fig. 1), which will be used for the tangential solution, below. Assumption (4) assures that the
contact area increases with the force, which implies that the pressure must not decrease in the whole contact
area.

In the last step, a tangential displacement ¢ is imposed on the elastic plane, and Coulomb’s law requires
that the tangential traction o, > 0 in the slip zone of the elastic plane must be equal to the normal pressure
multiplied with the coefficient of friction f (full slip traction)

6., = f p in the slip area. (4)

Similar to the contact condition (2) in normal direction, the stick condition requires that the relative motion
or slip s, = u, — £ must vanish in the stick zone, i.e. the displacement u, must be constant. Each normal
solution of (1) is also a tangential solution and the additional pressure Ap = p — p* causes a constant
displacement of C* in Fig. 1. Ap satisfies the stick condition when we assume that the stick area is identical
with the smaller contact area C*. Coulombs law in the slip zone can be satisfied by

ox=fAp=fp-p'), xeC. (5

There are also two side conditions of Coulomb’s law: The slip s, must be opposite to the traction o, (s, < 0
for o, > 0) in the slip zone, and the traction in the stick zone must be smaller than the value for full slip fp.
Since the displacements are unidirectional, the sign of the slip velocity ds, /d¢ of the conventional Coulomb
law can be replaced with the sign of the integral s,. Altogether we have the conditions

=0, xecCr
sx_“x_é{<0, xeC-C, ©
_ o :fp7 XEC_C*a
Al by 9

The traction inequality (7) in the stick area C* could only be violated for negative p*, which would violate
the contact condition (3), i.e. the traction inequality (7) is identical with the contact condition (2). Insertion
of the traction (7) in the contact law (1) gives the relation

u, = fr(u,—u) <0, k=—d/d. >0. (8)
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Eq. (8) holds also for the rigid body terms & and {, using the contact and stick conditions (2) and (6) at the
initial contact point. Insertion of (2) and (8) in (6) gives the condition

sy =fr(s,—s)) = frAs. <0, xeC-C" 9)

Eq. (9) is satisfied, because Fig. 1 shows that the absolute value |s.| for a point x € C — C* in the slip area
must be larger than |si|. Fig. 1 shows also that the slip condition (9) is identical with the condition of
separation (2), because the surfaces of the punch and half-plane would overlap for |s*| > |s.| = A(x).

The identity between Coulomb’s inequalities and the normal contact conditions was questioned by
Ciavarella (1999), who wrote that ““.. .there is no reason a priori to think that the inequalities in the normal
contact (basically the condition for no overlap outside the contact area and positive pressure in the contact
area) are connected at all with the inequalities of Coulomb’s law, which Dr. Jager seems to forget assuming a
personal, reduced version of Coulomb’s law q = fp in the slip area”. The reason may be an error in Ciav-
arella’s slip equation, where the rigid displacement & (6 in his notation) is missing, as discussed by Jager
(1999b). Ciavarella did not address the case of proportional loading and general loading scenarios, and
Jager’s previous publications were omitted in his papers.

Integration of the stress (7) gives the equation for the forces. Eq. (8) for displacement & = u,(x) and
{ =u,(xo) at the initial contact point can be used to calculate the global force-displacement relation for
constant normal forces and increasing tangential forces

E=/IEQ-EQ), =0{-¢/(fr). (10)
The equivalent normal displacement {* can be calculated from the second equation (10) and inserted in the
first equation for the force F,. Numerically, the normal displacement can be applied in steps of {* and the
difference for the normal forces gives the tangential force. The stiffness factor x can be determined by
differentiation of Eq. (10)

e dR(()/dl 4. .

LT aR@EE —a f U ()
Eq. (11) allows the calculation of the stiffness ratio x from numerical force displacement relations for
constant {, e.g. for ¢ = 0, {* = {. The derivative of the force can be replaced by incremental differences. The
theoretical relation k = —d, /d, in (11) follows after inversion of the displacement stress relation (1) for a
special profile as a flat punch under complete adhesion: o.; = f~!(x,y,u;)/d;. After integration, the dis-
placement-force relation ¢ = d,G(F;) and { = d.G(F,) (with { = u,, £ = u and a function G) can be in-
serted in (11) and gives the right hand side x = —d. /d..

2.1. Proportional loading

Eqgs. (10) and (11) can be used for proportional loading, where the force is applied at a constant angle 8
to the normal axis: dF;, = tan fdF;, dF, > 0. For tan f§ < f, the increase of the tangential force dF; is smaller
than the value for sliding dF, < fdFE,, and an infinitesimal slip area forms with (" ={—d¢/fx — (.
Therefore, the virtual indentation of the stick area {* can be replaced by { in (11) and we obtain

_dR(©)
aE(Q)

where the index “0” characterizes values at the beginning of proportional loading. The relation between the
force components carries over to the traction do,, = tan fdp, which can directly be integrated

sz—o'zx():tanﬁ(P—PO)- (13)

Relations (13) and (7) are identical for ., = 0, py = p*, with substitution of tan f for the friction coeffi-
cient f.

de kd{ = ktan Bdl, & — & = rtan B - &), (12)
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The derivation of this section can be extended to the three-dimensional case (even for multiple contact),
when the plane case in Fig. 1 is considered as a sectional cut parallel to the tangential force, and all ar-
guments are the same as in the plane case. Examples for the reduced friction model are presented at the end
of this article, and others can be found in parallel publication (Jager, 2002a).

3. General load histories

Load histories for thin strips were presented by Jager (1999a), using the simple wire-brush model. This
section shows that the same procedure can be used for other normal contact laws, when the assumptions of
the reduced friction model are valid. General load histories can be thought as a superposition of loading
increments of type (7), but it must be checked if the old and new slip zone overlap for two successive load
increments. The normal and tangential component of each increment are applied in two steps. When A,
increases, the normal component A{; is applied before the tangential component A&,. In order to simplify
the algorithm, the order of application is changed for decreasing A{; < 0, where the tangential component
A¢, must be applied first, and the normal component after that. This procedure avoids that normal un-
loading reduces the previous stick region in the special case when the tangential load increment is opposite
to the previous increment. For a reverse tangential load increment, the old slip zone sticks at the beginning,
whereas normal unloading, on the other hand, increases the slip zone and decreases the normal pressure.

An example for a positive increment Ag; and negative Ag, is illustrated in Figs. 2 and 3 and others
were published by Jager (1996, 1998) for paraboloidal surfaces and plane elasticity. The general algo-
rithm requires the introduction of the following three contact regimes: no overlapping (n.o.), partial

Fig. 2. No overlapping for k =2, fi = —f> = f.

Fig. 3. Partial overlapping k =2, fi = —f, = f.
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overlapping (p.o.), and complete overlapping of the old and new slip zone. The mathematical formula for
the tangential traction increment Ag; can be written in the form

_J felpe — p) for n.o.,

Agi = {fk(Pk —Pz) = fior(pi1 — p;)  for p.o., (14)
_ Sl = &) for n.o.,

AL = {ka(Ck - Cli) — fieik (G = &) for p.o., (15)

with py = p(ax), p; = p(a;), fr = £f and the superscript *’ for values of the stick area. The pressure can
also be written as a function of the virtual indentation , i.e p = p({), p* = p({*). Further, the formula for
the tangential force can be obtained by substitution of F, for g and F, for p in (15), because integration gives
the force. In the first line of (14), the contact regime of n.o. takes place, where the old and new slip zone do
not overlap, and we have a; > a4_; (a; > a; in Fig. 2). This solution was explained in the section on
tangential contact above. For a; < a;_;, p.o. takes place (a] < a5 < a;, in Fig. 3). Here, the overlapping
part of the old and new slip zone must first be made traction free by the second expression in square
brackets, before a traction distribution can be superposed, which satisfies Coulomb’s law. Finally, for
a; < a;_,, we have complete overlapping, and the old slip zone of step £ — 1 is erased.

The general algorithm for displacement controlled loading begins with the test of the stick condition for
a load increment k£ and consists of the following three steps:

1. Test the stick condition |A&,| < fxAl,. When it is satisfied, we have n.o. and Eq. (14) gives the corre-
sponding traction increment for n.o. The solution is found.

2. |A&| = fxAl. A new slip zone forms and we have either partial or complete overlapping of the old slip
region. The virtual displacement (] can be calculated from Eq. (15) for p.o., when the displacement in-
crements, A&, and A{; are given. For {; > (i , only a part of the old slip zone is erased by the new slip
traction and the traction increments are given by Egs. (14) for p.o. The solution is found.

3. The stick condition |A&;| < fkA(; and the condition for p.o. {; > {; | are violated and the new slip re-
gion overlaps the old slip zone completely. Apply the old and new increment A&, + A&,_, in one step and
repeat steps 1-3.

This algorithm must be successively repeated for all steps of the load history, starting with the first step.
An equivalent load history remains, where the contact regimes of complete overlapping have been elimi-
nated. The force is the integral over the traction. A similar algorithm was published in Jager (1996), for
three-dimensional loading with oblique load increments.

4. Comparison with FEM

A FEM solution for a flat rounded punch was compared with an analytical solution at Contact Mechanics
V by Jager (2001). The model and the interior stress field for frictional loading in Figs. 4 and 5 illustrate
the agreement between both solutions. Additional information can be found in the mentioned publication.
The program ANSYS 5.5 was used with rigid elements TARGE169 for the rigid punch with the semi-axis
b =5 mm of a flat region and a rounding with radius R, = 80 mm. A circular region of the half-plane was
modeled with 2-D elements PLANE42 and was fixed radially at Rz = 50 mm. The x-axis of the half-plane
represented the contact surface and consisted of CONTA171 elements, which were associated with the target
elements. The half-plane had a modulus of Elasticity £ = 1000 N/mm?, Poisson’s ratio was v = 0.4999 = 0.5
and the coefficient of friction f = 0.5. The normal force was applied in steps 1-3 with the values
a=1{54,58,6.2} of the contact semi-axis. Four increments were used for each step. After normal loading,
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Fig. 5. FEM solution on the left (a) and analytical result on the right (b) hand side.

a tangential force was applied in steps 4-6, with the values a* = {5.8, 5.4, 0} for the semi-axis of the stick area.
With these values, the tangential traction can be calculated from Eq. (7) with p = p(a) and p* = p(a*).

A closed analytical solution for Muskhellishvili’s potential for the interior stress filed was calculated with
a superposition method by Jager (2001). Fig. 5 compares results of step 5 in the regime of partial slip
(a* = 5.4) for a FEM model (left hand side) and an analytical solution. The maximum and the form of the
contours are the same for both methods, but the discrete FEM mesh produces some corners in the contours.
More information on the derivation of the analytical solution of this model can be found in the mentioned
paper by Jager (2001), and it was shown by Jager (2002a) that the reduced friction model can also be used for
small dissimilarity effects. Another example for dissimilar contact is analyzed in the next section.

5. Torus

An example of two horizontal elastic half-spaces in contact on a circular ring, with a radius R,, = 0.5 mm
of the undeformed contact circle, was calculated numerically using a program by Jager (1992). For small
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displacements, the surface profile can be approximated by a parabolic rounding at the initial contact line, of
the form 72 /(2R.), with R, = 1 mm in this example. For small displacements, the force-displacement curve
is almost linear, and the friction hysteresis of tangential loading very small. Therefore, as illustration of the
reduced friction model, a relatively large normal displacement increment of A{ = 0.1 mm was applied in 10
steps. In practical problems, the stresses and displacements must be much smaller, and the reduced friction
model gives even better approximations as in the figures below.

A characteristic parameter for the dissimilarity effect is the dissimilarity parameter y (Dundurs’ constant,
Dundurs, 1975)

1-2v;  1-2wn
26y 2G,
Y=o T e <0.5, (16)
G G,

where the index signifies body 1 or 2. y describes the coupling effect between the normal and tangential
components, which was neglected in Eq. (1). y increases with decreasing Poisson ratios v and has a value of
y = 0.29 for this example. For most metals, Poisson’s ratio has a value of v ~ 0.2-0.3 (Beryllium excepted
with v & 0.03). An improved parameter y/f was used by Spence (1973) to classify the size of the stick area
for normal loading of self-similar profiles. He found that the slip area increases with y/f. A numerical
calculation of tangential impact of dissimilar spheres (Jager, 1992) shows that the coefficient of restitution
for the tangential velocity changes with y/f, but a relatively low friction coefficient is necessary for sig-
nificant differences compared with similar materials. The material dissimilarity has only a small influence on
the normal velocity of central impact, especially for low friction.

The dissimilarity parameter for standard structural materials in contact is very small. Steel (v, = 0.3,
G, = 83,077 N/mm?) in contact with Aluminum (v; = 0.33, G; = 22,556 N/mm?) was selected for this
example, which may be regarded as a worst case for dissimilarity. The equivalent similar problem of un-
coupled half-spaces requires the material parameters v, = v, = 0.5, G, = G, = 26,227 N/mm?. Since the
dissimilarity effect increases with falling coefficients of friction, a small coefficient of friction
Jfstat = fxin = 0.2 was selected. After normal loading, the tangential displacement A¢; = 0.02 mm was ap-
plied in 11 steps, followed by unloading A¢, = —0.02 mm in 22 steps. The stiffness factor for similar
material is defined as x = 0.5(2 —v)/(1 —v) = 1.5. For dissimilar material, ¥ = 1.26 was determined
numerically using Eq. (11), as the ratio AF,/A{ for the last increment of the normal loading path and
AF,/A¢ for the first increment of tangential loading.

Fig. 6 shows the tangential force—displacement curves for similar (solid line) and dissimilar materials
(broken line). The dimension of the force is N and of the displacement mm. The discrepancy between the
dissimilar solution and the corresponding reduced friction model (circles) is maximum for the first

20000

reduced friction model
displacement

0.1 0.2

-0.2

first unloading dissimilar

Z second unloading § material
y’g 20000}

Fig. 6. The reduced friction model (circles) compared with numerical results for dissimilar material (broken line).



J. Jager | International Journal of Solids and Structures 40 (2003) 5051-5061 5059

unloading curve. It can be concluded that the reduced friction model gives a good approximation for the
force—displacement curves of the dissimilar problem, especially for repeated unloading.

Fig. 7 illustrates the asymmetric pressure distribution and Fig. 8 the tangential tractions for initial
tangential loading of similar material. The tractions values in Fig. 7 are scattered for small values of the
radius, due to the coupling between the tangential traction components of similar material. The solution of
the reduced friction model from Eq. (5) is presented with a broken line for the values & = 0.06, 0.12, 0.18.
As example, the values for the load increment ¢ = 0.06 are: {* =(—¢/fxk=08,{=1,/=0.2,k =1.5,s0
that the calculated values of the normal loading can be inserted in (5) ¢ = f(p({) — p({)) = f(p(1) —
p(0.8)), as the pressure difference for { = 1 and 0.8.

Finally, the asymmetric stick and slip areas are shown in Fig. 9 for dissimilar materials. The present
example is useful for the illustration of Egs. (14) and (15). The force displacement relation of the normal
solution F, = F,({) is used for the reduced friction model. The normal increment was applied in 10 incre-
ments A{ = 0.1 and the resulting force F; for increment i can be interpolated. The formulas for the first
loading in tangential direction in Fig. 6 are given by (14) and (15) for n.o.

25000 T
pressure /E‘i\

20000 / i~
15000 /

~. \\\
R/
I/ e ) \\\\

M
/

Sy Vo

0 0.2 04 0.6 0.8 1
radius

Fig. 7. The pressure p in N/mm? for similar materials calculated with 80 x 80 points in the potential contact area.
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' \
[ traction q !\ b
3000 / \
ICTSIA
2000 N E=0.18—L—w="]
‘L_{:-r'-_‘ /
£=0.12 _,..—---’/
1000 =
£-0.06 __,...—-""J
_ z-0.02

0 0.2 0.4 0.6 0.8 1 12 14
radius

N

Fig. 8. Tangential traction ¢ in N/mm? for initial tangential loading of the numerical solution (solid line) for similar material and the
reduced friction model (broken line).
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Fig. 9. Stick area (light gray) and slip area (dark gray) for dissimilar material (80 x 80 points, & = 0.2, initial tangential loading).

A& =& =/l =), AFq=Fq = fi(Fa —F)),

17
CTZCl—fl/flK an

The first Eq. (17) gives (] and determines F; = F.({})
Fa(&) = AE(G) = AFE(G = &/ fik), (18)

where the force F is written as a function of {. In this example the normal displacements {; is constant, but
the formula (18) holds also for decreasing {;. At the point & = 0.22, the tangential displacement is de-
creased by negative A¢,. Reverse slip takes place with p.o. in Egs. (14) and (15). The normal displacement is
constant {; = {, and slip is opposite f> = —fi.

AS = for(L = §) = fik(G = §) = =2fix(G = &),

19
AFalE) = ~2(Fa — F3). )
Summation of the increments (18) and (19) gives &, = A¢; + A&, which can be solved for (;
* 52 - él
= . 2
L=0+ ik (20)
Summation of (18) and (19) gives the tangential force F,, = AF,; + AF}, for unloading
& ) ( & — 51)
F =—fiF(&) - NG ——— ) +2AHE G+ . 21
o6 = =R~ (6= 7 ) 42 0+ 5 S e
The result for the reloading curve F,; can be obtained by substitution of index 3 for 2, —f; for f; and
& = —0.22. This example illustrates the advantage of the numerical evaluation compared with the cum-

bersome manual calculation of Egs. (14) and (15).

6. Conclusion

Fundamental properties of the elastic friction model have been presented for general three-dimensional
contact laws, and it has been shown that Coulomb’s inequalities are identical with the contact inequalities.
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New methods for proportional and general loading scenarios have been presented, in form of a general-
ization of special earlier solutions for thin strips and paraboloidal surfaces. It has been shown in the paper
that the frictionless normal load—displacement curve is sufficient for the determination of the frictional
force—displacement relation. This can save much computing time, because the friction solution is non-linear
and time-consuming. Future applications of this model are fretting and wear of machine elements, brakes,
gears, fasteners, and impact problems with friction. It is possible to remove the restrictions of the reduced
friction model, and to develop corrections for non-elastic materials. The elastic friction principle can also be
employed in the field of plasticity as a model for isotropic and kinematic hardening. A FEM example for a
flat rounded punch has been presented at the end of the article and the dissimilarity effect was illustrated for
annular contact. A BEM program was used for the solution of a contact area with 3600 elements, which is
much larger than typical contact solutions with FEM models. It was shown that the force—displacement
relation of the reduced friction model can be used as approximation for dissimilar materials, although the
basic assumption of equal material in contact is violated. An explanation may be that the local redistri-
bution of the stress has a small influence on the global behavior.
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