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Abstract

The properties of a reduced friction model for elastic bodies with general surfaces in contact are explained, and it is

proved that the tangential friction problem can be reduced to the normal problem. The tangential solution results as the

difference of the full slip traction for actual contact and a smaller contact area, which represents the stick area (or

multiple areas). The local traction in the slip area opposes the relative motion in the same way as the normal relative

approach opposes the contact pressure, as required by Coulomb�s slip inequality. The stick inequality for the traction is

identical with the contact condition of positive pressure. A superposition method for general loading scenarios is ex-

plained and an example is calculated at the end. The force displacement relation of the reduced friction model agrees

well with the FEM solution, even for dissimilar materials, because the dissimilarity effect is small in practical ap-

plications. Since numerical solutions of frictional contact are rare in literature, an example for a contact area with a hole

is presented.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Contact problems are a field of increasing importance in mechanics. Typical applications are mechanical

elements as joints, gears, gaskets, brakes, roller bearings, clutches and more. Advanced computer methods

allow the solution of complicated problems and require new methods for verification and modeling. A new

method by J€aager (1995, 1998) ‘‘reduces’’ the friction problem to the normal problem, and therefore was
called ‘‘reduced elastic friction model’’. There is also a correspondence between the conditions of Cou-

lomb�s law and the contact conditions, when two elastic bodies are in contact on the area C�. An increase of

the pressure p� by Dp enlarges the contact area C� to the size of C. The normal increment Dp ¼ p � p�

satisfies the contact condition for the relative displacement: sz ¼ 0 in C�. For equal normal and tangential

stress-displacement equations, the stick condition s�x ¼ 0 is identical with the normal contact condition,

assuming that C� coincides with the stick area. Setting the traction q ¼ fDp satisfies Coulomb�s slip

equation q ¼ fp in the slip zone C � C�, with the coefficient of friction f and p� ¼ 0 outside of C�. There are

also two inequalities, (1) the traction q must be smaller than fp in the stick zone C� and (2) the slip must
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oppose the traction in the slip zone C � C�. The stick inequality q ¼ fDp ¼ f ðp � p�Þ < fp is satisfied for

positive pressure increments, and Dp > 0 is also the normal contact condition for a truncated punch with

the flat base C�. For equal stress-displacement equations, the normal and tangential displacements are

proportional, which carries over to the slip, i.e. sx is proportional to the normal relative approach
Dsz ¼ sz � s�z . The normal approach Dsz opposes the normal pressure Dp, and the traction q opposes the slip

sx in the same way. It can be concluded that the mathematical model for friction is identical with the normal

contact model, although it is physically different. This equivalence is independent of the mathematical form

of the contact law. The integral of the traction gives the tangential force Fx ¼ f ðFz � F �
z Þ as the difference of

the slip force fFz for the contact area and fF �
z for the stick area. This equation can be used for the cal-

culation of the virtual normal force F �
z ¼ Fz � Fx=f , which determines the stick area C�.

The elastic friction principle cannot be regarded as a strict mathematical theorem, because physical

applications require the omission of side effects, such as the coupling between tangential traction compo-
nents of the classical Cattaneo–Mindlin model for paraboloidal surfaces. Some details of referred publi-

cations, which are necessary for the understanding of elastic properties, are included in the present

manuscript, in order to make it more self-contained. The necessary assumptions and the proof of

Coulomb�s inequality were presented at the conference Pacam VII by J€aager (2002b). A summary of new

solutions and a computer program for half-space problems, which is used below, can be found in a

forthcoming book by J€aager (2003).
2. Formulation of the model

The basic assumptions of the reduced elastic friction model are

(1) Equal bodies of linear elastic materials in contact.

(2) Coulomb�s rigid sliding law is used in a local form and assumes that the frictional traction is propor-

tional to the pressure.

(3) The displacement–load equations are equal and uncoupled for all components.
(4) Advancing contact.

(5) Motion without rolling (no rotation around a tangential axis of contact).

The third assumption can be written
uk ¼ dkf ðx; y; rzkÞ; k 2 fx; y; zg; ð1Þ
where uk denotes the displacement components, rzk the components of the surface stress, dk constant

compliances, index k the coordinates x, y, z and f ðx; y; rzkÞ an arbitrary function. Examples for the function

f ðx; y; rzkÞ are the integrals of line forces for half-planes (J€aager, 1997), constants for a plane strip (J€aager,
1999a), and a Winkler foundation (J€aager, 2000). Equal tangential compliances dx ¼ dy , assure a constant

direction of the displacements parallel to the tangential force, whereas the normal compliance dz can be

different.

The model of a rigid punch on a flat elastic plane is used as illustration of the contact and friction
conditions. In the first step, the lower elastic plane is shifted upwards by the value f� and a contact area C�

forms, as illustrated in Fig. 1, where the asterisk �*� characterizes values of step 1. We have the following

conditions for the relative motion s�z of the lower elastic plane with respect to the rigid punch and the

pressure p� ¼ �r�
zz
s�z ¼ u�z ðxÞ � f�
¼ �hðxÞ contact for x 2 C�;
> �hðxÞ separation for x 62 C�;

�
ð2Þ



Fig. 1. Rigid punch in contact with an elastic plane.
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p� ¼ �r�
zz

> 0 for x 2 C�;
¼ 0 for x 62 C�;

�
ð3Þ
with the gap hðxÞ in undeformed contact. The relative motion s�z < 0 in Fig. 1 and the displacement u�z differ
by the rigid body motion �f� in Fig. 1.

In the next step, the compression is increased to the value f and a larger contact area C forms. The

condition for contact and separation are the same as in Eqs. (2) and (3), when the asterisk is omitted for all
variables, and Fig. 1 shows that points in the contact area C� do not move relatively to the rigid punch. The

contact condition (2) for the relative motion in the contact area must be szðxÞ ¼ �hðxÞ < s�z ðxÞ < 0 for

x 2 C � C� (Fig. 1), which will be used for the tangential solution, below. Assumption (4) assures that the

contact area increases with the force, which implies that the pressure must not decrease in the whole contact

area.

In the last step, a tangential displacement n is imposed on the elastic plane, and Coulomb�s law requires

that the tangential traction rzx > 0 in the slip zone of the elastic plane must be equal to the normal pressure

multiplied with the coefficient of friction f (full slip traction)
rzx ¼ f p in the slip area: ð4Þ
Similar to the contact condition (2) in normal direction, the stick condition requires that the relative motion

or slip sx ¼ ux � n must vanish in the stick zone, i.e. the displacement ux must be constant. Each normal

solution of (1) is also a tangential solution and the additional pressure Dp ¼ p � p� causes a constant

displacement of C� in Fig. 1. Dp satisfies the stick condition when we assume that the stick area is identical

with the smaller contact area C�. Coulombs law in the slip zone can be satisfied by
rzx ¼ fDp ¼ f ðp � p�Þ; x 2 C: ð5Þ
There are also two side conditions of Coulomb�s law: The slip sx must be opposite to the traction rzx (sx < 0

for rzx > 0) in the slip zone, and the traction in the stick zone must be smaller than the value for full slip fp.
Since the displacements are unidirectional, the sign of the slip velocity dsx=dt of the conventional Coulomb

law can be replaced with the sign of the integral sx. Altogether we have the conditions
sx ¼ ux � n
¼ 0; x 2 C�;
< 0; x 2 C � C�;

�
ð6Þ

rzx ¼ f ðp � p�Þ ¼ fp; x 2 C � C�;
< fp; x 2 C�:

�
ð7Þ
The traction inequality (7) in the stick area C� could only be violated for negative p�, which would violate

the contact condition (3), i.e. the traction inequality (7) is identical with the contact condition (2). Insertion

of the traction (7) in the contact law (1) gives the relation
ux ¼ fjðuz � u�z Þ < 0; j ¼ �dx=dz > 0: ð8Þ
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Eq. (8) holds also for the rigid body terms n and f, using the contact and stick conditions (2) and (6) at the

initial contact point. Insertion of (2) and (8) in (6) gives the condition
sx ¼ fjðsz � s�z Þ ¼ fjDsz < 0; x 2 C � C�: ð9Þ

Eq. (9) is satisfied, because Fig. 1 shows that the absolute value jszj for a point x 2 C � C� in the slip area

must be larger than js�z j. Fig. 1 shows also that the slip condition (9) is identical with the condition of

separation (2), because the surfaces of the punch and half-plane would overlap for js�z j > jszj ¼ hðxÞ.
The identity between Coulomb�s inequalities and the normal contact conditions was questioned by

Ciavarella (1999), who wrote that ‘‘. . .there is no reason a priori to think that the inequalities in the normal

contact (basically the condition for no overlap outside the contact area and positive pressure in the contact

area) are connected at all with the inequalities of Coulomb’s law, which Dr. J€aager seems to forget assuming a

personal, reduced version of Coulomb’s law q ¼ fp in the slip area’’. The reason may be an error in Ciav-

arella�s slip equation, where the rigid displacement n (d in his notation) is missing, as discussed by J€aager
(1999b). Ciavarella did not address the case of proportional loading and general loading scenarios, and

J€aager�s previous publications were omitted in his papers.

Integration of the stress (7) gives the equation for the forces. Eq. (8) for displacement n ¼ uxðx0Þ and

f ¼ uzðx0Þ at the initial contact point can be used to calculate the global force–displacement relation for

constant normal forces and increasing tangential forces
Fx ¼ f ½FzðfÞ � Fzðf�Þ�; f� ¼ f� n=ðfjÞ: ð10Þ

The equivalent normal displacement f� can be calculated from the second equation (10) and inserted in the

first equation for the force Fx. Numerically, the normal displacement can be applied in steps of f� and the
difference for the normal forces gives the tangential force. The stiffness factor j can be determined by

differentiation of Eq. (10)
j ¼ cz
cx

¼ dFzðf�Þ=df�

dFxðnÞ=dn
¼ dx

�dz
; f� ¼ f� n=ðfjÞ: ð11Þ
Eq. (11) allows the calculation of the stiffness ratio j from numerical force displacement relations for

constant f, e.g. for n ¼ 0, f� ¼ f. The derivative of the force can be replaced by incremental differences. The

theoretical relation j ¼ �dx=dz in (11) follows after inversion of the displacement stress relation (1) for a

special profile as a flat punch under complete adhesion: rzk ¼ f �1ðx; y; ukÞ=dk. After integration, the dis-

placement-force relation n ¼ dxGðFxÞ and f ¼ dzGðFzÞ (with f ¼ uz0, n ¼ ux0 and a function G) can be in-

serted in (11) and gives the right hand side j ¼ �dx=dz.

2.1. Proportional loading

Eqs. (10) and (11) can be used for proportional loading, where the force is applied at a constant angle b
to the normal axis: dFx ¼ tan bdFz, dFz > 0. For tan b < f , the increase of the tangential force dFx is smaller

than the value for sliding dFx < f dFz, and an infinitesimal slip area forms with f� ¼ f� dn=fj ! f.
Therefore, the virtual indentation of the stick area f� can be replaced by f in (11) and we obtain
dn ¼ dFxðnÞ
dFzðfÞ

jdf ¼ j tan bdf; n� n0 ¼ j tan bðf� f0Þ; ð12Þ
where the index ‘‘0’’ characterizes values at the beginning of proportional loading. The relation between the

force components carries over to the traction drzx ¼ tan bdp, which can directly be integrated
rzx � rzx0 ¼ tan bðp � p0Þ: ð13Þ

Relations (13) and (7) are identical for rzx0 ¼ 0, p0 ¼ p�, with substitution of tan b for the friction coeffi-
cient f .
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The derivation of this section can be extended to the three-dimensional case (even for multiple contact),

when the plane case in Fig. 1 is considered as a sectional cut parallel to the tangential force, and all ar-

guments are the same as in the plane case. Examples for the reduced friction model are presented at the end

of this article, and others can be found in parallel publication (J€aager, 2002a).
3. General load histories

Load histories for thin strips were presented by J€aager (1999a), using the simple wire-brush model. This
section shows that the same procedure can be used for other normal contact laws, when the assumptions of

the reduced friction model are valid. General load histories can be thought as a superposition of loading

increments of type (7), but it must be checked if the old and new slip zone overlap for two successive load

increments. The normal and tangential component of each increment are applied in two steps. When Dfk
increases, the normal component Dfk is applied before the tangential component Dnk. In order to simplify

the algorithm, the order of application is changed for decreasing Dfk < 0, where the tangential component

Dnk must be applied first, and the normal component after that. This procedure avoids that normal un-

loading reduces the previous stick region in the special case when the tangential load increment is opposite
to the previous increment. For a reverse tangential load increment, the old slip zone sticks at the beginning,

whereas normal unloading, on the other hand, increases the slip zone and decreases the normal pressure.

An example for a positive increment Dq1 and negative Dq2 is illustrated in Figs. 2 and 3 and others

were published by J€aager (1996, 1998) for paraboloidal surfaces and plane elasticity. The general algo-

rithm requires the introduction of the following three contact regimes: no overlapping (n.o.), partial
Fig. 2. No overlapping for k ¼ 2, f1 ¼ �f2 ¼ f .

Fig. 3. Partial overlapping k ¼ 2, f1 ¼ �f2 ¼ f .
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overlapping (p.o.), and complete overlapping of the old and new slip zone. The mathematical formula for

the tangential traction increment Dqk can be written in the form
Dqk ¼
fkðpk � p�kÞ for n:o:;
fkðpk � p�kÞ � fk�1ðpk�1 � p�kÞ for p:o:;

�
ð14Þ

Dnk ¼
fkjðfk � f�kÞ for n:o:;
fkjðfk � f�kÞ � fk�1jðfk�1 � f�kÞ for p:o:;

�
ð15Þ
with pk ¼ pðakÞ, p�k ¼ pða�kÞ, fk ¼ �f and the superscript �*� for values of the stick area. The pressure can

also be written as a function of the virtual indentation f, i.e p ¼ pðfÞ, p� ¼ pðf�Þ. Further, the formula for

the tangential force can be obtained by substitution of Fx for q and Fz for p in (15), because integration gives

the force. In the first line of (14), the contact regime of n.o. takes place, where the old and new slip zone do

not overlap, and we have a�k > ak�1 (a�2 > a1 in Fig. 2). This solution was explained in the section on

tangential contact above. For a�k < ak�1, p.o. takes place (a�1 < a�2 < a1, in Fig. 3). Here, the overlapping
part of the old and new slip zone must first be made traction free by the second expression in square

brackets, before a traction distribution can be superposed, which satisfies Coulomb�s law. Finally, for

a�k < a�k�1, we have complete overlapping, and the old slip zone of step k � 1 is erased.

The general algorithm for displacement controlled loading begins with the test of the stick condition for

a load increment k and consists of the following three steps:

1. Test the stick condition jDnkj < fjDfk. When it is satisfied, we have n.o. and Eq. (14) gives the corre-

sponding traction increment for n.o. The solution is found.
2. jDnkjP fjDfk. A new slip zone forms and we have either partial or complete overlapping of the old slip

region. The virtual displacement f�k can be calculated from Eq. (15) for p.o., when the displacement in-

crements, Dnk and Dfk are given. For f
�
k > f�k�1 only a part of the old slip zone is erased by the new slip

traction and the traction increments are given by Eqs. (14) for p.o. The solution is found.

3. The stick condition jDnkj < fjDfk and the condition for p.o. f�k > f�k�1 are violated and the new slip re-

gion overlaps the old slip zone completely. Apply the old and new increment Dnk þ Dnk�1 in one step and

repeat steps 1–3.

This algorithm must be successively repeated for all steps of the load history, starting with the first step.

An equivalent load history remains, where the contact regimes of complete overlapping have been elimi-

nated. The force is the integral over the traction. A similar algorithm was published in J€aager (1996), for

three-dimensional loading with oblique load increments.
4. Comparison with FEM

A FEM solution for a flat rounded punch was compared with an analytical solution at Contact Mechanics

V by J€aager (2001). The model and the interior stress field for frictional loading in Figs. 4 and 5 illustrate

the agreement between both solutions. Additional information can be found in the mentioned publication.

The program ANSYS 5.5 was used with rigid elements TARGE169 for the rigid punch with the semi-axis

b ¼ 5 mm of a flat region and a rounding with radius Rc ¼ 80 mm. A circular region of the half-plane was

modeled with 2-D elements PLANE42 and was fixed radially at RG ¼ 50 mm. The x-axis of the half-plane
represented the contact surface and consisted of CONTA171 elements, which were associated with the target

elements. The half-plane had a modulus of Elasticity E ¼ 1000 N/mm2, Poisson�s ratio was m ¼ 0:4999 � 0:5
and the coefficient of friction f ¼ 0:5. The normal force was applied in steps 1–3 with the values

a ¼ f5:4; 5:8; 6:2g of the contact semi-axis. Four increments were used for each step. After normal loading,



Fig. 4. FEM model of a punch on a plane.

Fig. 5. FEM solution on the left (a) and analytical result on the right (b) hand side.
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a tangential force was applied in steps 4–6, with the values a� ¼ f5:8; 5:4; 0g for the semi-axis of the stick area.

With these values, the tangential traction can be calculated from Eq. (7) with p ¼ pðaÞ and p� ¼ pða�Þ.
A closed analytical solution for Muskhellishvili�s potential for the interior stress filed was calculated with

a superposition method by J€aager (2001). Fig. 5 compares results of step 5 in the regime of partial slip

ða� ¼ 5:4Þ for a FEM model (left hand side) and an analytical solution. The maximum and the form of the

contours are the same for both methods, but the discrete FEMmesh produces some corners in the contours.

More information on the derivation of the analytical solution of this model can be found in the mentioned

paper by J€aager (2001), and it was shown by J€aager (2002a) that the reduced friction model can also be used for
small dissimilarity effects. Another example for dissimilar contact is analyzed in the next section.
5. Torus

An example of two horizontal elastic half-spaces in contact on a circular ring, with a radius Rm ¼ 0:5 mm
of the undeformed contact circle, was calculated numerically using a program by J€aager (1992). For small
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displacements, the surface profile can be approximated by a parabolic rounding at the initial contact line, of

the form r2=ð2RcÞ, with Rc ¼ 1 mm in this example. For small displacements, the force–displacement curve

is almost linear, and the friction hysteresis of tangential loading very small. Therefore, as illustration of the

reduced friction model, a relatively large normal displacement increment of Df ¼ 0:1 mm was applied in 10
steps. In practical problems, the stresses and displacements must be much smaller, and the reduced friction

model gives even better approximations as in the figures below.

A characteristic parameter for the dissimilarity effect is the dissimilarity parameter c (Dundurs� constant,
Dundurs, 1975)
c ¼
1�2m1
2G1

� 1�2m2
2G2

1�m1
G1

þ 1�m2
G2

6 0:5; ð16Þ
where the index signifies body 1 or 2. c describes the coupling effect between the normal and tangential
components, which was neglected in Eq. (1). c increases with decreasing Poisson ratios m and has a value of

c ¼ 0:29 for this example. For most metals, Poisson�s ratio has a value of m � 0:2–0:3 (Beryllium excepted

with m � 0:03). An improved parameter c=f was used by Spence (1973) to classify the size of the stick area

for normal loading of self-similar profiles. He found that the slip area increases with c=f . A numerical

calculation of tangential impact of dissimilar spheres (J€aager, 1992) shows that the coefficient of restitution

for the tangential velocity changes with c=f , but a relatively low friction coefficient is necessary for sig-

nificant differences compared with similar materials. The material dissimilarity has only a small influence on

the normal velocity of central impact, especially for low friction.
The dissimilarity parameter for standard structural materials in contact is very small. Steel (m2 ¼ 0:3,

G2 ¼ 83,077 N/mm2) in contact with Aluminum (m1 ¼ 0:33, G1 ¼ 22,556 N/mm2) was selected for this

example, which may be regarded as a worst case for dissimilarity. The equivalent similar problem of un-

coupled half-spaces requires the material parameters m1 ¼ m2 ¼ 0:5, G1 ¼ G2 ¼ 26,227 N/mm2. Since the

dissimilarity effect increases with falling coefficients of friction, a small coefficient of friction

fstat ¼ fkin ¼ 0:2 was selected. After normal loading, the tangential displacement Dn1 ¼ 0:02 mm was ap-

plied in 11 steps, followed by unloading Dn2 ¼ �0:02 mm in 22 steps. The stiffness factor for similar

material is defined as j ¼ 0:5�ð2� mÞ=ð1� mÞ ¼ 1:5. For dissimilar material, j ¼ 1:26 was determined
numerically using Eq. (11), as the ratio DFz=Df for the last increment of the normal loading path and

DFx=Dn for the first increment of tangential loading.

Fig. 6 shows the tangential force–displacement curves for similar (solid line) and dissimilar materials

(broken line). The dimension of the force is N and of the displacement mm. The discrepancy between the

dissimilar solution and the corresponding reduced friction model (circles) is maximum for the first
Fig. 6. The reduced friction model (circles) compared with numerical results for dissimilar material (broken line).
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unloading curve. It can be concluded that the reduced friction model gives a good approximation for the

force–displacement curves of the dissimilar problem, especially for repeated unloading.

Fig. 7 illustrates the asymmetric pressure distribution and Fig. 8 the tangential tractions for initial

tangential loading of similar material. The tractions values in Fig. 7 are scattered for small values of the
radius, due to the coupling between the tangential traction components of similar material. The solution of

the reduced friction model from Eq. (5) is presented with a broken line for the values n ¼ 0:06, 0.12, 0.18.
As example, the values for the load increment n ¼ 0:06 are: f� ¼ f� n=fj ¼ 0:8, f ¼ 1, f ¼ 0:2, j ¼ 1:5, so
that the calculated values of the normal loading can be inserted in (5) q ¼ f ðpðfÞ � pðf�ÞÞ ¼ f ðpð1Þ�
pð0:8ÞÞ, as the pressure difference for f ¼ 1 and 0.8.

Finally, the asymmetric stick and slip areas are shown in Fig. 9 for dissimilar materials. The present

example is useful for the illustration of Eqs. (14) and (15). The force displacement relation of the normal

solution Fz ¼ FzðfÞ is used for the reduced friction model. The normal increment was applied in 10 incre-
ments Df ¼ 0:1 and the resulting force Fzi for increment i can be interpolated. The formulas for the first

loading in tangential direction in Fig. 6 are given by (14) and (15) for n.o.
Fig. 7. The pressure p in N/mm2 for similar materials calculated with 80� 80 points in the potential contact area.

Fig. 8. Tangential traction q in N/mm2 for initial tangential loading of the numerical solution (solid line) for similar material and the

reduced friction model (broken line).



Fig. 9. Stick area (light gray) and slip area (dark gray) for dissimilar material (80� 80 points, n ¼ 0:2, initial tangential loading).
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Dn1 ¼ n1 ¼ f1jðf1 � f�1Þ; DFx1 ¼ Fx1 ¼ f1ðFz1 � F �
z1Þ;

f�1 ¼ f1 � n1=f1j
ð17Þ
The first Eq. (17) gives f�1 and determines F �
z1 ¼ Fzðf�1Þ
Fx1ðn1Þ ¼ f1Fzðf1Þ � f1Fzðf1 � n1=f1jÞ; ð18Þ
where the force Fz is written as a function of f. In this example the normal displacements f1 is constant, but
the formula (18) holds also for decreasing f1. At the point n1 ¼ 0:22, the tangential displacement is de-
creased by negative Dn2. Reverse slip takes place with p.o. in Eqs. (14) and (15). The normal displacement is

constant f1 ¼ f2 and slip is opposite f2 ¼ �f1.
Dn2 ¼ f2jðf2 � f�2Þ � f1jðf1 � f�2Þ ¼ �2f1jðf1 � f�2Þ;
DFx2ðn2Þ ¼ �2f1ðFz1 � F �

z2Þ:
ð19Þ
Summation of the increments (18) and (19) gives n2 ¼ Dn1 þ Dn2 which can be solved for f�2
f�2 ¼ f1 þ
n2 � n1
2f1j

: ð20Þ
Summation of (18) and (19) gives the tangential force Fx2 ¼ DFx1 þ DFx2 for unloading
Fx2ðn2Þ ¼ �f1Fzðf1Þ � f1Fz f1

�
� n1
f1j

�
þ 2f1Fz f1

�
þ n2 � n1

2f1j

�
: ð21Þ
The result for the reloading curve Fx3 can be obtained by substitution of index 3 for 2, �f1 for f1 and

n1 ¼ �0:22. This example illustrates the advantage of the numerical evaluation compared with the cum-

bersome manual calculation of Eqs. (14) and (15).
6. Conclusion

Fundamental properties of the elastic friction model have been presented for general three-dimensional

contact laws, and it has been shown that Coulomb�s inequalities are identical with the contact inequalities.
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New methods for proportional and general loading scenarios have been presented, in form of a general-

ization of special earlier solutions for thin strips and paraboloidal surfaces. It has been shown in the paper

that the frictionless normal load–displacement curve is sufficient for the determination of the frictional

force–displacement relation. This can save much computing time, because the friction solution is non-linear
and time-consuming. Future applications of this model are fretting and wear of machine elements, brakes,

gears, fasteners, and impact problems with friction. It is possible to remove the restrictions of the reduced

friction model, and to develop corrections for non-elastic materials. The elastic friction principle can also be

employed in the field of plasticity as a model for isotropic and kinematic hardening. A FEM example for a

flat rounded punch has been presented at the end of the article and the dissimilarity effect was illustrated for

annular contact. A BEM program was used for the solution of a contact area with 3600 elements, which is

much larger than typical contact solutions with FEM models. It was shown that the force–displacement

relation of the reduced friction model can be used as approximation for dissimilar materials, although the
basic assumption of equal material in contact is violated. An explanation may be that the local redistri-

bution of the stress has a small influence on the global behavior.
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